Microdomain-forming proteins and the role of the reggies/flotillins during axon regeneration in zebrafish.

نویسنده

  • Claudia A O Stuermer
چکیده

The two proteins reggie-1 and reggie-2 (flotillins) were identified in axon-regenerating neurons in the central nervous system and shown to be essential for neurite growth and regeneration in fish and mammals. Reggies/flotillins are microdomain scaffolding proteins sharing biochemical properties with lipid raft molecules, form clusters at the cytoplasmic face of the plasma membrane and interact with signaling molecules in a cell type specific manner. In this review, reggie microdomains, lipid rafts, related scaffolding proteins and caveolin-which, however, are responsible for their own microdomains and functions-are introduced. Moreover, the function of the reggies in axon growth is demonstrated: neurons fail to extend axons after reggie knockdown. Furthermore, our current concept of the molecular mechanism underlying reggie function is presented: the association of glycosyl-phophatidyl inositol (GPJ)-anchored surface proteins with reggie microdomains elicits signals which activate src tyrosine and mitogen-activated protein kinases, as well as small guanosine 5'-triphosphate-hydrolyzing enzymes. This leads to the mobilization of intracellular vesicles and to the recruitment of bulk membrane and specific cargo proteins, such as cadherin, to specific sites of the plasma membrane such as the growth cone of elongating axons. Thus, reggies regulate the targeted delivery of cargo-a process which is required for process extension and growth. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 'lipid raft' microdomain proteins reggie-1 and reggie-2 (flotillins) are scaffolds for protein interaction and signalling.

Reggie-1 and reggie-2 are two evolutionarily highly conserved proteins which are up-regulated in retinal ganglion cells during regeneration of lesioned axons in the goldfish optic nerve. They are located at the cytoplasmic face of the plasma membrane and are considered to be 'lipid raft' constituents due to their insolubility in Triton X-100 and presence in the 'floating fractions'; hence they ...

متن کامل

Reggies/flotillins regulate retinal axon regeneration in the zebrafish optic nerve and differentiation of hippocampal and N2a neurons.

The reggies/flotillins--proteins upregulated during axon regeneration in retinal ganglion cells (RGCs)--are scaffolding proteins of microdomains and involved in neuronal differentiation. Here, we show that reggies regulate axon regeneration in zebrafish (ZF) after optic nerve section (ONS) in vivo as well as axon/neurite extension in hippocampal and N2a neurons in vitro through signal transduct...

متن کامل

Reggies/flotillins regulate cytoskeletal remodeling during neuronal differentiation via CAP/ponsin and Rho GTPases.

The reggies/flotillins were discovered as proteins upregulated during axon regeneration. Here, we show that expression of a trans-negative reggie-1/flotillin-2 deletion mutant, R1EA, which interferes with oligomerization of the reggies/flotillins, inhibited insulin-like growth factor (IGF)-induced neurite outgrowth in N2a neuroblastoma cells and impaired in vitro differentiation of primary rat ...

متن کامل

The reggie/flotillin connection to growth.

The proteins reggie-1 and reggie-2 were originally discovered in neurons during axon regeneration. Subsequently, they were independently identified as markers of lipid rafts in flotation assays and were hence named flotillins. Since then, reggie/flotillin proteins have been found to be evolutionarily conserved and are present in all vertebrate cells - yet their function has remained elusive and...

متن کامل

Identification of teleost Thy-1 and association with the microdomain/lipid raft reggie proteins in regenerating CNS axons.

During regeneration, retinal ganglion cell axons in fish upregulate a cell surface protein that is recognized by the monoclonal antibody (mAB) M802. M802 antigen appeared to be linked to the intracellular, membrane-associated lipid raft/microdomain proteins reggie-1 and reggie-2 that were previously shown to be reexpressed in axon-regenerating neurons [Development 124 (1997), 577]. Here, we rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1812 3  شماره 

صفحات  -

تاریخ انتشار 2011